Last time I/ ovorien-Guuss corvotwe of suftrees 2 things.
r distovce function
$B=\frac{1}{2} g^{-1} \alpha_{2} g$ shage peratier of lenel cols
Fund equ

$$
\mathcal{L}_{2} B+B^{2}=-R_{2 r}
$$

where $R_{2 r}(X)=-R\left(2_{r}, X\right) \partial_{r}$
why 2 vinuses? recall

$$
\left.-\int_{Q} k d v_{0}\right\rangle=\int_{2 \pi}\left\langle D e_{1}, e_{2}\right\rangle
$$

$S_{1}^{2}\left(e_{1}, e_{2}\right)$ is the only nateral
ordoring ordoing
counterdodwike b E rotation
uuseffenataly, - te. To juctly, K is d (rotation of parallel relative to frome)

$$
\text { on } 6^{2}
$$

 \& an orieuted Rrove, when traverned counterdodewise
S_{1}^{2} Ca oractation

$$
\begin{aligned}
G_{0} \| \partial_{r} & =e_{1}, X=e_{z_{1}} \\
\left\langle X, R_{2}(X)\right\rangle & \left.=-\left(\text { RU, }, e_{2}\right) e_{1}, e_{2}\right\rangle \\
& =K d v_{0}\left(e_{1}, e_{2}\right)
\end{aligned}
$$

counotodocturine
rotation os frove

Runk: Rabod $=g_{c e} R_{a b}{ }^{e} d$ is very agmemetric
obveras: Rabcd.
leas obvious: $R_{a b c d}$
${ }^{\Gamma}$ tunbortality \Rightarrow aubstres to dreck fur on. Frove $\left\langle a_{c}, e d\right\rangle$
A kew sgur \rightarrow
dA I A A slew- ayur.

enen leass
Arge (Riouchi) $R(x+1) z+R(z, y)(+R(Y, z) x=0$
F there, its unautad we donit une a frove

$$
\nabla \cdot \nabla \cdot \sum_{i} \Sigma_{\text {nguk }}
$$

6 peruntations of (x, y, z) ouly 3 distinat
7.0.: $\Sigma_{3} \rightarrow \mathbb{R}$ in group algebra

$$
\begin{aligned}
& (1-(12)) D_{1} . \cdots R(\cdot i) . \quad \varepsilon_{3} C \mathbb{R}\left(\varepsilon_{3}\right) \text { regulear reán } \\
& R \in \operatorname{six}(23) \\
& \left(1+(123)+(123)^{2}\right)(1-(12))=\sum_{g_{6}=\varepsilon_{3}} \operatorname{sgn}(y) g \\
& =\left(1+(123)+(123)^{2}\right)(1-(23)) \quad 1
\end{aligned}
$$

Cor Rabcd $=R_{c d a b}$
Γ Alyehwer on Σ_{4}

$$
\begin{array}{ll}
\mathbb{R}(\sigma(x, 4,2, \omega)): \Sigma_{u} \rightarrow \mathbb{R} & \sigma=(123) \\
\left(1+(123)+(123)^{2}\right) R=0 & \tau=(123 u) \\
(1+(12)) R=0 & \\
(1+(34)) R=0 &
\end{array}
$$

Requescatations of 5^{4}

ariv	$\frac{\operatorname{Bninin}}{1}$
$\frac{\text { alt }}{\text { atd }}$	1
atd	3

stdoatt 3
fun 2
rule out - briv log $1+(12)=2$
Fiondi, , $\cdot a\left(t \quad\right.$ by $\left(1+\sigma+\sigma^{2}\right)=3$ dsotriv
$\left.\begin{array}{l}\text { vunt } \\ \text { rules } \\ \text { thisout } \\ \text {. Std by } \\ (12)(24)\end{array}\right)=1,1$ 14to oult by $((2)(3 u)=1$ 1.

Also wasul
$z^{\text {al }}$ R ionde.

$$
d^{7} \Omega=0
$$

Tree in geverad, lect there's a trick \&or R

$$
\begin{aligned}
d(d A & \left.=\frac{1}{2}(A, A]\right)+\left[A, d A+\frac{1}{2}[A, A]\right] \\
& =\underbrace{\left.\frac{1}{2}[d A, A]-\frac{1}{2}[A, d A]+[A, d A]+\frac{1}{2}[A, C A, A]\right]}_{0} \text { Jacob: }
\end{aligned}
$$

Nosunal coordinate tricte:

- Metorer in nomal coards

$$
\begin{aligned}
\ddot{x}^{i}+\Gamma_{j k i}^{i} x^{j} x^{w}=0 & \Rightarrow \Gamma \text { squ }=0 \\
& \Rightarrow T=0 \\
& \Rightarrow g_{i j}=\delta_{i j}+o\left(\left.k\right|^{2}\right)
\end{aligned}
$$

Une narmal coords uken you con to brae tesms!

$$
\begin{aligned}
& \nabla_{a} \nabla_{b} \nabla_{c} 2 d-\nabla_{b} \nabla_{a} \nabla_{c} 2 d=\nabla(a, b)\left(\nabla_{c} 2 d\right)=0 \\
& \Rightarrow\left(1-c(22)-\left((2 \pi)^{2}\right) \nabla_{a} R_{b c} d e=0\right.
\end{aligned}
$$

Atfariatine persectave
 cthisis the twed Gl-resin

$$
l d \sim>\perp R
$$

Plueters ~ exaclly cats out the simpe teusore.

Sectronal corvetures
For sumances M^{2}
$T^{\text {son }} \pi M$ is 1 -dimensional
(R_{1212} deternins all)
$\mathbb{A} M e \mathbb{R}^{3}$, in's $\operatorname{det}\left(h_{a b}\right)$
$\frac{\text { Chect }}{5}$

$$
\begin{aligned}
S & =\delta^{a b} R_{c a}^{c} b \\
& =R_{12}{ }^{c}{ }^{2}+R_{21}^{2} 1=2 K
\end{aligned}
$$

Retorn to genereal n.

If $\pi \leq T_{q} M$ is a 2-pone, dive

$$
\begin{aligned}
& S_{\pi}=\exp _{p}(\pi) \leq M \\
& \sec (\pi)=k_{p}\left(S_{\pi}\right) \\
& \sec (v, \omega)
\end{aligned}
$$

Pras $\operatorname{Sec}(v, w)=\frac{v^{a} w^{b} v^{c} w^{d} R_{a b}, d}{|v \sim w|^{2}}$

$$
r I I=0 \text { at } p
$$

$$
\left.\Longrightarrow \pi\right|_{T S_{\pi}}=\left.\tilde{\pi}\right|_{i S_{a}} \text { at } \tau
$$

If (v, w) orthonsmal, we ore done the chect essect of (aveblu).
i.e. quabratio form dotarined up to $\Lambda^{\mu} V$ by restrition to sunde temsors in $\Lambda^{2} U$

Qrap $\frac{\text { All }}{\text { The }}$ cectional conratves deternine R

$$
\begin{aligned}
T_{\text {Let }} D & =R^{(s)}-R^{(2)} \\
O & =D(v(w, x, v, w, x) \\
& =2 D(v, x, w, x) \\
O & =D(v, x+u, w, x-u) \\
& =D(v, x, w, u)+D(v, u, w, x)
\end{aligned}
$$

giues extra velation, males it $0 \quad J$
Prasp $R_{c}(v, v)=\sum_{\epsilon_{i}} R\left(\epsilon_{i}, v, \epsilon_{i}, v\right)$ for a on bowis $\begin{array}{r}\epsilon_{i} \perp v\end{array}$

$$
=\left\lvert\, \omega^{2} C_{\epsilon_{i}} \operatorname{acc}\left(\epsilon_{i}, \frac{0}{\mid 01}\right)\right.
$$

$$
S=\sum_{i \neq j} Q\left(\epsilon_{i}, \epsilon_{j}, \epsilon_{i}, \epsilon_{j}\right)
$$

$$
=\sum_{i \cdot j}^{i \neq j} \operatorname{aec}\left(\epsilon_{1}, \epsilon_{i}\right)
$$

$$
\begin{aligned}
& \text { Car wel alwags } \geqslant 0 \rightarrow \text { Ric, } s \text { wiwaye } \\
& \leq 0 \\
& \leq 0
\end{aligned}
$$

In pulticules, constrod ceatonal carvatue k

$$
R_{a b c o l}=K\left(g_{a c} g_{b a}-g_{a d} g_{b c}\right) \quad \text { wat -is this Rireadhi? }
$$

Reuts gacigled het Riondus, Cant verighe is when you sam- squnctrize.

